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Sedimentation of Homogeneous Suspensions in 
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The question of a possible container shape dependence of the sedimentation 
velocity in a homogeneous suspension is reexamined. To this end we develop a 
statistical theory of suspensions based on low-Reynolds-number hydrodynamics 
of spherical particles in a container. It is shown, to first order in the volume 
fraction, that in an arbitrary vessel the relative sedimentation velocity is shape 
independent, but that at the same time shape-dependent convection occurs. The 
theory forms a bridge between earlier calculations for special geometries by 
Beenakker and Mazur and a phenomenological theory recently proposed by 
Nozi6res. 
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1. I N T R O D U C T I O N  

Recently some studies have again been devoted to the question of whether 
the sedimentation of a homogeneous suspension might depend on the 
shape of its container. Burgers in 1941 stressed the possibility of such 
a dependence, which he could not rule out, but which did not seem 
acceptable. This possibility arises from the long range of the so-called 
hydrodynamic interaction between suspended particles. 

These interactions, which result from the fluid flow caused by the 
motion of a particle, decay very slowly. In fact, in an expansion in inverse 
powers of the particle separation R they contain, besides shorter ranged 
contributions, terms of order R -1 and R 3. The R 1 contribution would 
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lead to a divergence of the sedimentation velocity in an unbounded suspen- 
sion. This divergence, however, disappears if the interactions with container 
walls are taken into account, or alternatively, if the relative sedimentation 
velocity, i.e., the mean particle velocity with respect to the mean volume 
flow, is considered. But it is the R - 3  interaction that leads to the question 
of the shape dependence by giving rise to a conditionally convergent 
integral in the expression for the relative sedimentation velocity. 

In 1972, and again in 1976, Batchelor reconsidered the problem and 
argued, on the basis of general physical considerations, how this con- 
ditionally convergent integral should be evaluated. Since his reasoning is, 
however, strictly only valid for an unbounded system without walls, the 
question of a possible dependence of sedimentation on the shape of the 
container could not be considered to be settled definitely. 

After Mazur  and van Saarloos had formulated a general theory to 
calculate many-body hydrodynamic interactions, Beenakker and Mazur 
applied this formalism in 1985 to a suspension enclosed in a spherical con- 
tainer. Indeed, even to order linear in the volume fraction ~b of suspended 
particles, to which only interactions between two suspended particles need 
be taken into account, one is already faced with a three-body problem, with 
the (spherical) container formally acting as a third particle. It turned out to 
be possible in this way to calculate to order ~b for a homogeneous suspen- 
sion and in the center of the spherical container the mean particle velocity 
as well as the mean volume flow. A similar calculation was also performed 
for sedimentation toward a plane wall. It was found for both geometries 
that the relative sedimentation has indeed the value found by Batchelor for 
the unbounded system, but that the mean particle velocity in the 
laboratory frame had for the spherical container a value different from the 
one found for sedimentation toward a plane wall. Thus, convection flows 
depending on shape may occur. These flows represented an unexpected 
phenomenon for homogeneous suspensions, not foreseen in earlier 
treatments. 3 Of  course, this effect is very weak in dilute suspensions, and is 
moreover rapidly masked by the much larger buoyancy-driven convection 
occurring if inhomogeneities have been induced during sedimentation, for 
instance, by inclined walls. This, however, does not imply that the effect 
has no relevance: after all, its strength has the same order of magnitude as 
the intensively studied (first-order) density correction to the sedimentation 
coefficient. 

3 In fact, in his i976 paper Batchelor explicitly states that for a collection of particles, each of 
which is acted on by the same steady force, "the average particle velocity [relative to the 
mean volume flow].., is of course [equal to] the average particle velocity relative to the 
walls of a vessel containing a statistically homogeneous suspension." In other words, he 
states that the mean volume flow relative to the walls of the vessel is zero. 
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Nozi6res recently showed that the above-mentioned rather surprising 
phenomenon could be understood on a "macroscopic" level (i.e., a level 
on which the suspended particles have lost their identity, so to say) as a 
consequence of the local coupling between two flow fields, the relative sedi- 
mentation velocity and the mean volume velocity. He formulated, with 
profound physical insight, a theory of sedimentation in terms of two 
coupled differential equations for these fields containing a number of 
phenomenological coefficients and supplemented by an "effective" boun- 
dary condition. The solutions of Nozi6res' equations contain the shape- 
independent relative sedimentation velocity as well as the shape-dependent 
intrinsic convection phenomenon found for a spherical container geometry 
by Beenakker and Mazur. 

In this paper we present a "microscopic" derivation of a "macroscopic" 
sedimentation theory for a suspension of spherical particles contained in a 
vessel of arbitrary shape. The theory is given up to linear order in the 
volume fraction ~b. In Section 2 we give, within the framework of a 
formalism of induced forces, the formal solution of the linearized Stokes 
equation for a system of spheres moving in a fluid within a container. From 
this solution we derive in Section 3, by averaging over particle con- 
figurations, to linear order in q~, general expressions for the sedimentation 
velocity and the volume flow. 

In Section 4 we discuss, for a better understanding of the problem, the 
unbounded suspension. The expression for the sedimentation velocity then 
contains the conditionally convergent integral mentioned above. We show 
that a relation exists which allows us to express this conditionally 
convergent integral in terms of the Laplacian of the volume velocity. 
Batchelor's argument to resolve the problem of a possible shape depen- 
dence in sedimentation amounts to stating that the latter quantity must be 
zero on physical grounds, i.e., for reasons of symmetry. Then, due to the 
relation found, a particular value must be attributed to the conditionally 
convergent integral. For a finite system, however, this integral has a value 
which does depend on the shape of the c~ntainer. Since nevertheless the 
relative sedimentation velocity is expected to be shape independent, for a 
finite system there must be other, compensating, shape-dependent integrals 
in the expression for the relative sedimentation velocity. On the other hand, 
in view of the previous results pointing to the existence of the phenomenon 
of "essential" or "intrinsic" convection, the mean volume velocity must 
obey an equation which has shape-dependent solutions, however large the 
vessel may be. 

These points are explicitly shown in Section 5. We also demonstrate in 
this section that on the "macroscopic" scale the bulk part of the solution 
for the volume velocity V corresponds to the solution which would be 
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found from the differential equation for V valid in the bulk part of the 
system, with an effective boundary condition at the container surface. As 
Nozi6res already surmised, the value of the phenomenological coefficient 
in this boundary condition inferred from the Beenakker-Mazur result 
constitutes only a lowest order approximation. 

The microscopic theory for arbitrary container shape presented in Sec- 
tion 5, which explicitly takes into account the hydrodynamic interactions 
with container walls, may be considered to provide a justification for 
Nozi6res' phenomenological approach to sedimentation. 

In the rather technical Section 6 we discuss in detail that surface 
corrections to Batchelor's value for the relative sedimentation velocity and 
to Nozi+res' equations indeed vanish as the surface recedes to infinity. 

Finally, we make some concluding remarks. 

2. H Y D R O D Y N A M I C  E Q U A T I O N S  

We consider a system of N spherical particles of common radius a and 
with centers at R1,..., RN suspended in an incompressible fluid of viscosity 
and enclosed in a container of volume ~ .  The pressure tensor P(r) in the 
fluid is given in terms of the velocity field v(r) and the pressure field p(r) by 

/Sv~ 8vp'~ 
P=~(r) = 8=/~ p ( r ) -  r / ~ r  + ~r~) (2.1) 

and obeys the quasistatic Stokes equation 

- V -  P(r) + Prg = 0 for I r -  Ril > a, i = 1,..., N (2.2) 

Here p:-denotes the fluid mass density and g the earth's gravitational field. 
We employ stick boundary conditions. On the surface W of the container 
we thus have 

v(r) = 0 (r e W) (2.3) 

whereas on the surfaces of the particles 

u = ui@ (.0 i A (r - -  Ri) ( [ r - R / I  = a )  (2.4) 

holds, with ui and [.o i the translational and angular velocities of sphere i, 
respectively. 

Due to stationarity the total force acting on each sphere is zero. In 
other words, the hydrodynamic force cancels the gravitational force on 
each sphere, 

4~z 
-- f fi. P(Ri+ afi) a2 dfi +-~-a3psg=O (2.5) 



Sedimentat ion in Finite Vessels 141 

where Ps is the mass density of the spheres, fi denotes a unit vector and 
dfi .- ,  integration over the surface of the unit sphere. We note that the 

gravitational field exerts no torque on the particles. Therefore, due to 
stationarity, the torques exerted by the fluid on the particles also vanish. 

As in previous work, a reformulation of the flow problem in terms of 
induced forces is convenient. The fluid equation of motion (2.1), (2.2) can 
then be extended to all of space and written in the form 

N 
- V .  P ( r )=q  A v ( r ) - V p ( r ) =  - ~ Fi(r[R 1 ..... RN, W)--zw(r)pfg (2.6) 

i=0 

for all r; the function zw(r) is unity for r inside and zero for r outside the 
container. Equation (2.6) is equivalent to the original boundary value 
problem constituted by Eqs. (2.1)-(2.4) if one imposes the following 
requirements on the induced forces F~ and the extensions of the pressure 
and velocity fields (cf., e.g., ref. 1): 

Fi(rlR1 ..... RN, W ) = 0  

p(r) = pfg" r 

v(r)  = u i q - o ) i  A ( r - R i )  

F0(rlR 1 ..... RN, W) = 0 

p(r) = 0 

v(r) = 0 

for I r - R i l > a  

for ]r-R~l <a ,  

for j r -  Ril ~< a 

for r inside the container 

for r outside the container 

for r outside the container 

and on its wall 

(2.7a) 

i=l,. . . ,N 

(2.7b) 

(2.7c) 

(2.8a) 

(2o8b) 

(2.8c) 

The induced forces depend on the positions R 1 , . . .  , Px N of the centers of all 
spheres as well as on the set W of all points of the container wall; for the 
sake of brevity we often omit the arguments R1,..., W. 

As a consequence of these extensions, the induced force densities on 
the spheres are of the form 

Fi(r) = fi ( ~ - 2 ) 6 ( [ r - R i [ -  a ) ( i  = 1,..., N) (2:9) 

Similarly, the induced force density F o is concentrated as a surface force 
density fo on the container wall. 

Next we introduce a reduced pressure p'(r) by 

p'(r) = {p(r) - pyg.  r inside the container (2.10) 
0 outside the container 

822/'53/1-2-10 
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Equation (2.6) then takes the form 
N 

r /Av(r ) -Vp ' ( r )  = - ~ Fi(r ) (2.11) 
i = 0  

and must be solved with the subsidiary incompressibility condition 

V. v(r) = 0 (2.12) 

Using the Oseen tensor r(r) = (l/r)(1 + f2), with 1 the unit tensor of rank 2 
and f2 the dyadic product ff, one finds (2) 

1 
v(r)= ~ -~ f r ( r -R i -a f i ) ' f i ( f i )aZd f i  

i = 1  

+1__1_ f r(r-r')'fo(r')ds' (2.13) 

where ds' is the surface element on the container wall. With the aid of the 
integral kernel 

3 1 
H(r)=- 4~ r 2 ~3 (2.14) 

one can express the modified pressure tensor 

P'(r) = P(r) + [p '(r)  - p(r)] 1 (2.15) 

in an analogous way 4 
N 

P ' ( r )  = ~ j ]"](r - R i -  a n ) "  fi(fi) a 2 dfi 
i : 1  

+ fw f'/(r - r ' ) .  fo(r') ds' (2.16) 

We conclude this section by establishing a relation between the 
induced force F~ and the gravitational force on sphere i. To this end, we 
apply Gauss' theorem to Eq. (2.5) to obtain 

4:r 
0 =  - f fi " P(Ri + afi )a2 dfi +-~- a3 ps g 

4re 
= - l i m f  V.P(Ri+r)dr+~-a3psg 

~,[0 J r < a + e  

= - l i m  fr {El(r) + pfg) dr +4---~a3psg (2.17) 
~J.O < a + e  

4 This may be verified by solving the Poisson equation V - ( r / A v - V p ' ) =  - A p ' =  - Z i V "  F~ 
for p and using Eq. (2.13) to calculate (Vv) s, the symmetric velocity gradient. 
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Thus, the total induced force on sphere i is equal to the buoyancy-correc- 
ted gravitational force on it. Since we consider a stationary situation, this 
force must be compensated by the friction force K which the fluid exerts on 
the sphere, 

K = - f Fi(r ) dr = 4re -~-a3(ps-pf)g (2.18) 

4. G E N E R A L  F O R M U L A S  FOR S E D I M E N T A T I O N  V E L O C I T Y  
A N D  V O L U M E  F L O W  

We now consider the motion of a sphere i at position Ri. In order to 
express its translational velocity u~ in terms of the induced forces, we 
integrate the boundary condition (2.4) over the surface of sphere i and 
substitute relation (2.13), 

1 Ui:-~ f dll {UiAv(Oi A ( f ia+R,) )  

- ~ f  dfi v(R~+ aft) 

=_~nf dn_~ ^ 1 {j~=IN f rill' a2r(R, + aft - R : - a f t ' )  �9 fj(fi') 

+ fwds'r(Ri+afi-r')'fo(r')} (3.1) 

To proceed, we need the integral relation 

3a4 artl f d f i ~ ( R + a f i ) = {  3ar(R)+la3D(R)=-A(R)I for R >~ a 
for R < a (3.2) 

with 

D(R) _ = ~  (1 - 3R 2) (R>0) (3.3) 

For later use we note here that 

1 f d f i D ( R + a f i ) = { O ( 0  R) for R>a 
4rt for R < a 

(3.4) 
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Using formula (3.2), we find from (3.1) 

N 

67zrlaui = -- K + y' I dfi a ~ A ( R , -  R y -  aft)" fy(fi) 
j = l  
j ~ i  

+ fwds' A(R e-  r ' ) .  fo(r') (3.5) 

For our purpose it is necessary to split the force density fj(fi) into a 
constant part and a part hs(fi ) in such a way that the integral over hs(fi ) 
vanishes, hj(fi) is thus defined by 

1 
fs(fi) = hj(fi) + dfifs(fi)=hs(fi)-~K (3,6) 

In the last member of this equation use was made of the relation (2.18). 
After substitution of formula (3.6) into Eq. (3.5) the integrals containing 
the constant parts -(1/4rca2)K of the force densities fj can be evaluated: 

6 r c q a u i = - K + L  { [3 a3 1 - -~ar(Ri-R2)+- ~ D(Ri -R2)  "K 
j = l  
j # i  

+ f d, a A(R,- Rj- a")" hi")} 

+ f  ds' A ( R i -  r') �9 fo(r') (3.7) 
w 

where use has been made of formulas (3.2)-(3.4). In particular, when only 
two particles are present, Eq. (3.7) takes the form 

6 z c r / a u l = - K + f  d s ' A ( R l - r ' ) . f o ( r ' i R 1 ,  W) 
W 

a 3 

+ ~ dfi a2A(R1 - R2 - a~)" h2(fi I R~, R2, W) 
o 

+ f  ds'A(R~-r') .  [fo(r'lRl, R2, W)-fo(r'lR~, W)] (3.8) 
W 

The first two terms on the rhs are the single-particle contribution to ul;  
they remain unchanged if particle 2 is removed. The other terms represent 
the modification of ul due to the presence of the second particlg. 
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We now evaluate for a homogeneous suspension the average velocity 
U(R1) of a particle with center at R~. We restrict the discussion to the case 
of a dilute suspension, in which case it suffices to take into account only 
terms linear in the volume fraction ~b = 4~a3N/~f. To first order in q~ the 
nonadditivity of hydrodynamic interactions plays no role. One may then 
write the many-particle interaction contribution to U(R~) as a super- 
position of two-particle terms. The conditional probability density 
P(RzlRI) for finding a particle at R2, given that there is a particle at R1, is 
given to this order by 

fl/o " for IR1-R2I >2a, d(R2)>a 
P(R2[R1) = (3.9) 

elsewhere 

where d(R) denotes the distance of the point R inside the container to the 
container wall. 

One thus finds from (3.8) for the average particle velocity 

6rcr/aU(R~) = - K + f  ds' A(R 1 - r ' ) ' f o ( r ' tR~ ,  W) 
W 

' ~  R1 -- R21 > 2a 
d(R2) > a 

I a3 N dR2 D ( R I - R 2 ) ' K  
g l  -- R21 > 2a T 

d(R2) > a 

N f dR2{fdfia2A(R1-R2-afi)'h2(filR1,R2, W) 
~ - - ~  R I _ R 2 I  > 2  a 

d(R2)> a 

+ fwds'A(Rl-r')" [fo(r'lR1, R2, W)-fo(r ' lRx,  W)]} 

(3.1o) 

The second integral on the right-hand side diverges in the limit of an 
infinitely large container. This divergent contribution to U is, however, 
compensated by a backflow generated by the induced forces on the 
container wall, (3,4) a fact which clearly demonstrates that the influence of 
walls persists even in the limit of infinite container dimensions. For the 
infinite system without wall the difficulty arising from the divergent integral, 
the so-called Smoluchowski paradox, may be avoided (5) by considering 
sedimentation with respect to the mean volume flow V(r). This relative 
sedimentation velocity w(r) - U(r) - V(r) is the proper quantity to describe 
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sedimentation also when container walls are present, because, in contrast to 
U(r), it will turn out to be independent of the container shape. 

The mean volume flow V(r) can be found by taking the average of the 
velocity field v(r) occurring in Eq. (2.6), with the extension defined in 
Eq. (2.7c), over all configurations of the spheres. Indeed, the velocity field 
v(r) gives the actual physical velocity of the point r, regardless of whether 
this point is inside a particle or inside the fluid. To lowest order in ~b the 
mean of v(r) is obtained by averaging Eq. (2.13) with induced forces 
corresponding to the case that there is only one particle. In this way one 
finds, using Eq. (3.2), for d(r)> 2a, 

NId dRz{fdfia 23a 6zcqaV(r) = 7~ (R2) > ~ -~- r(r - a 2 - -  aft) 

�9 4rca 2 t- h2(filR2, W) 

} + fwds'-~-r(r-r')'fo(r'lR2, W) 
a 3 

= -  ~K --~-- s >a [~ aT(r-- R2) +--~- D ( r -  R2)I �9 K 
d(R2) > a 

Nfd dR2{fdfla23-~r(r-R2-afl)'h2(fl[R2, W) 
~ - V  (R2) > a 

-~- r(r - r ') .  fo(r' I R2, W) (3.11) 

Subtraction of the mean volume flow at r =R~ from the sedimentation 
velocity U(R1) [cf. Eq. (3.10)3 yields for the relative sedimentation velocity 
for d(Rx)> 2a the result 

6n~aw(R1) 

= - ( l - q ~ ) K + f  ds 'A(R~-r ' ) ' fo( r ' JR~,  W) 
W 

~N f~ y dR2A(R1 - R2). K + 
- -  < ]R 1 -- R2I < 2a 

d(R2)  > a 

f a3 N dR2~- D ( R I - R 2 ) ' K  
~/~ R t  -- R21 > 2 a  

d(R2)  > a 
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N + - -  
f R I - - R 2 1  > 2 a  

d(R2)  > a 

�9 [ h 2 ( f i l R 1 , R 2 ,  

�9 [fo(r'l R1, R 2, 

+ 
- -  I l l  R2I > 2a  

d(R2)  > a 

f dfi a2A(R1 - R 2 - aft) 

W) - h2(filR2, W)] + f ds' A(R, - r') 
w 

W) - fo(r' j R~, W) - fo(r' I R2, W)]} 

{ 03 
f dfia 2 --~ D(R 1 - R z - aft)- h2(fi I R2, W) 

D(R~ - r ' ) -  fo(r' I R2,  W) 

N f { f d f i a 2 - ~ T ( R 1 - - R 2 - - a f i ) ' h 2 ( f i I R 2 ,  W) 
~ / "  i R l _  R2] < 2 a  

d(R2)  > a 

,a } + r Jw ds'--~ r(R1 - r ')"fo(r '  I R2, W) (3.12) 

The second integral on the right-hand side can be performed explicitly, 
using formulas (3.2)-(3.4), and one finds, for d(R1) > 3a, 5 

6nqaw(R1) 

= -  1--~(b K + fwds' A(Rl-r').fo(r'lR1, W ) 

a 3 
dR2-~- D(R 1 - R2)" K Nf ' ~  IRl  R 2 [ > 2 a  

d(R2)  > a 

+ 
- -  RI  -- R21 > 2 a  

d (R2)  > a 

d R  2 f d f i a2A(R,  - R 2 -  aft)"  h2(f i lR1,  R2) 

N f dR2{f dfia2A(R1-R2-afi) 
-[- ~ RI -- R21 > 2a  

d (R2)  > a 

�9 [-h2(filR1, R2, W)-h2(f i lR2,  W)-h2(f i tR1,  g2) ] 

+fwds'A(Rl-r')" I fo(r'lR1, R2, W ) - f o ( r '  t R1, W ) - f o ( r '  [ a2, W)]} 

s If the distance from RI to the wall is smaller than 3a, the term (11/2)~bK on the rhs of 
Eq (3.13) is modified and depends explicitly on this distance We are, however, not 
interested in the sedimentation velocity that close to the wall 
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" ~ - ~  R 1 R2I > 2a dfia2 -~- D/(R1-R2-aft)" h2(fi I R2, W )  

d(R2) > a 

N f dR2{fdfia 23a R t - - R 2 I < 2 a  - -~ - r (R~-R2-a f i ) ' h2 ( f i  R2, W) 
d(R2) > a 

r 3a } 
+ Jw ds' r(R1 - r'). fo(r' I R2, W) (3.13) 

At first sight it would seem that there still remain complications due to 
the long range of the Oseen tensor T, which is contained in the tensor A. 
However, wherever this tensor now occurs, either the domain of 
integration is small [viz. (4rc/3)(2a) 3 ] or the tensor is multiplied by 
functions which make the integrand short-ranged, as will be discussed in 
Section 6. Before we come back in more detail to this last point, we first 
discuss the case of an unbounded system. 

4. T H E  U N B O U N D E D  S U S P E N S I O N  

A popular way to get rid of the complications arising from the 
presence of walls, i.e., within our formalism, of the terms containing the 
induced force f0 on the container walls, is to consider an infinite system 
without container walls right from the start; then fo is zero by definition. 
Furthermore, also h2(fil R2) vanishes, because in an unbounded fluid a 
single particle subjected to a homogeneous external field of force carries 
only a force monopole (see, e.g., ref. 1). Equation (3.13) then reduces to 

6rcr/aw(R1) = - ( 1 - ~ q 6 )  

+~a'k ;,R1 

3 f dR 2 D(R 1 - R2)" K K -  1-~ ~b R I - - R 2 1  > 2a  

dR2 f dfi A ( R ~ - R 2 - a f i ) ' h 2 ( f i ] R I , R 2 )  
R2[ > 2a (4.1) 

The last integral in this equation has been evaluated by Batchelor, (6) who 
combined exact results for the hydrodynamic two-particle problem with 
numerical methods and found the value 1.55~bK, so that 

6rcr/aw(R1) = - I 1 - ( ~ - ~ +  1.55)~b]K 

3 I D(RI-Rz) 'K 16re ~b 1~1-1~21>2a (4.2) 
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This equation is rather simple in comparison to Eq. (3.13). The price to be 
paid is the fact that its rhs is not well defined, since the remaining integral 
does not converge absolutely and its value depends on the way in which 
the integrations are carried out. For instance, if one first integrates over a 
spherical region of finite volume and then lets the radius of this region 
grow to infinity, one obtains 

dR:  D(R, - R2)" K = 0 (4.3) blLrn 
fl RI R2I > 2a 

R2<b 

while first integrating over a flat slice perpendicular to K and then 
increasing the thickness of the slice to infinity yields 

lim I D ( R ' - R 2 ) ' K - -  8re 
b ~ o o  111__ R21 > 2a 3 K (4.4) 

IK" R2I < b 

The question now arises of whether this conditional convergence is an 
artefact of the unphysical model, the infinite system without walls, or 
whether it reflects a dependence of w on the shape of the container, which 
would persist even if the latter becomes infinitely large. This problem was 
noticed by Burgers (3) in 1941, who could, however, no provide a solution. 
He states that "the possibility that the sedimentation velocity should be 
dependent upon the shape of the vessel nevertheless does not appear to be 
readily acceptable." Burgers goes on to mention that during a discussion at 
the Netherlands Academy of Sciences, "Professor Vening Meinesz raised 
the question whether it would be possible to solve the problem [i.e., deter- 
mine the proper sedimentation coefficient] for a suspension extending 
indefinitely in all directions, provided the boundary condition which in the 
case of a suspension enclosed in a vessel is imposed by the impermeability 
of the walls were replaced by an equivalent condition of another type." The 
argument which Batchelor ~6) used to deal with the problem of the 
conditionally convergent integral may be considered to be in the spirit of 
Vening Meinesz's remark. 

Before we discuss his argument, we derive the following relation for 
the infinite homogeneous suspension: 

3 I dR2 D(R1-R2) 'K=rcaSt /AV(R1)- �89 (4.5) 
- 16--~ ~b RI__R21 > 2  a 

In this way the ambiguity of the integral on the lhs is transformed into an 
ambiguity in the value of the Laplacian of the mean volume velocity. 
Combination of Eqs. (4.2) and (4.5) yields 

6rcr/aw(R1) = - (1  - 6.55~b)K + ga3r/AV(R1) (4.6) 



150 Geigenm/~ller and Mazur 

In order to derive the identity (4.5), we first note that the velocity field 
v(r] R) which is generated in an unbounded fluid by translational motion of 
a single sphere with center at R has the form [which follows also from 
Eq. (2.13)] 

v ( r l R ) :  

1 
- A ( r - R ) . K - -  for [ r - R I  > a  

6 ~ a  
1 

- K - -  for I r -  RI < a 
6n~a 

(4.7) 

so that, using the formula 

one finds 

A r ( r ) = 2 D ( r )  ( r > 0 )  (4.8) 

1 
Av(rlR)  = - O ( I r - R t - a )  D ( r - - R ) . K - -  

4~r/ 

I 1 ] 1 (4.9) + 6 ( [ r - R I - a )  1 - ~ ( r - R )  2 "K4rcr/a----- 5 

To first order in ~b we thus obtain for a homogeneous suspension of 
spheres, using once more property (3.4), 

3 
A V(r) = A ~ q~ f dR v(r I R) 

3 
--47za 3 ~b f dR Av(r lR)  

f -- 167z2r/a 3~b Ir-Rl>a 
D ( r - R ) . K d R +  ~b 

2rca3tl 
K (4.10) 

which is the desired relation (4.5). 
It now remains to determine, on general physical grounds, the value 

AV(R1). One possible chain of arguments runs as follows: There is only 
one preferential direction in the infinite homogeneous suspension, viz., the 
direction/s of the field of force, which we take as the direction of the z axis. 
Due to symmetry, V x and Vy must be zero, and Vz can at most depend on 
z. Since, because of incompressibility, the divergence ~?Vz/OZ of V vanishes, 
so does the Laplacian A V = ( 0 ,  0, 02V~fi?z2). Combination of this result 
with Eq. (4.6) leads to 

67zr/a w = - (1  - 6.55~b)K (4.11 ) 
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Batchelor's argumen(6) is essentially equivalent to the one explained above. 
He states that in the infinite homogeneous suspension the deviatoric part of 
the stress tensor is uniform, and uses this condition to assign the value 
- �89 to the conditionally convergent integral on the lhs of Eq. (4.5). In 
Appendix A we show that Batchelor's condition implies A V = 0. 

We note that the value found in this way for the conditionally 
convergent integral corresponds to the flat-slice geometry [cf. Eq. (4.4)]. A 
posteriori this is evidently the natural geometry for an infinite system with 
one preferential direction, and the arguments presented above seem to add 
very little to that observation. When one accepts that a dependence of the 
sedimentation velocity w on the shape of the vessel would be absurd, there 
can be no doubt that Eq. (4.11) contains the correct sedimentation coef- 
ficient to order ~b. Formally, however, the question of shape dependence 
has not been settled, for two reasons: 

1. In Eq. (3.13), valid for a finite vessel, the first integral on the rhs 
(which for an unbounded suspension becomes the conditionally convergent 
integral discussed in this section) clearly does show a dependence on the 
shape of the vessel. If the sedimentation velocity w always has the value 
given in Eq. (4.11), then this shape dependence of the first integral must be 
compensated by a similar shape dependence of other integrals on the rhs of 
Eq. (3.13). Such a cancellation is not obvious and needs to be shown. 

2. Beenakker and Mazur (7) could be direct calculation determine the 
mean volume flow V(r) and the sedimentation velocity'w(r) in the center 6 
of a spherical container with radius b. They found that in the limit of b 
tending to infinity w had the value w = - ( 1 - 6 . 5 5 ~ b ) K  derived by 
Batchelor for the infinite system without walls. On the other hand, however, 
they also found that V is nonzero and finite in the center of the container, 
even for b ~ oo. Therefore, the field V(r) must contain vortices, since the 
volume flow is incompressible, a fact which sheads a strange light on the 
general validity of the symmetry arguments used to determine the value of 
the conditionally convergent integral in the case of an unbounded 
suspension. A completely satisfactory understanding of these points can 
only be achieved by a further analysis of sedimentation in a finite vessel. 

5. M A C R O S C O P I C  E Q U A T I O N S  FOR T H E  
S E D I M E N T A T I O N  IN A F IN ITE  V E S S E L  

Returning to Eq. (3.13), we shall find it useful to express the second 
integral on its rhs in terms of AV(R1), in analogy to the relation (4.5) for 

6 For other points of the container the calculation seemed to present overwhelming difficulties. 
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the unbounded system. For this purpose we need the following extension of 
formula (4.8) to all values of r: 

At(r) = 2D(r) - / ~  6(r) 1 

where for integrals containing D(r) the prescription 

f D(r) g(r) dr --l im f D(r) g(r) dr 
e $ 0  r > e  

holds. Combining formulas (5.1) and (3.11), we find 

(5.1) 

(5.2) 

7zr/a3 A V(R1)_  3 f q$ - -- 16---~ ~b dR 2 D(R1 - R2)" K + ~ K 
IR l  R2I > a 
d ( R 2 )  > a 

+ ~  dR 2 dfi D ( R 1 - R 2 - a f i ) "  hz(fi I R2, W) 
(R2)  > a - -  

a3 } 
+fds'--~ D(R 1 - r ' ) "  fo(r'lR2, W) 

(Jfdfia2h2(filRl-afi, W), d(R1) > 2a (5.3) 
2 

Inserting this relation, which generalizes formula (4.5), into Eq. (3.13), we 
obtain after some straightforward rearrangements of terms 

6~r/aw(R1) 

= - (1 - 5~b)K + xr/a 3 A V(RI)  

+ 3_~3 s fdfia2A(R,-R2-afi)'h2(filR1, R2) 
,+Tza  IRI  R21 > 2a  

d ( R 2 )  > a 

+ lye ds' A(R 1 - r')" fo(r' I R1, W) 

+N f dR2{f dfia2A(R1-R2-afi).[h2(fiIR1,R2, W) 
IR I  - -  R21 > 2a  
d ( R 2 )  > a 

- h2(filR1, R:) - h2(fil R2, W)] + f ds' A(RI - r') 
W 

�9 [ fo(r ' [R, ,  R2, W ) - f o ( r ' l R 1 ,  W ) - f o ( r ' [ R 2 ,  W ) ] }  
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N f dR 2 {f  dfia2A(Ri-Rz-afi)'h2(filR2, W) 
' ~  Rt R2] > 2a 

d(R2) > a 

+ fwdS' A(Rl-r')'fo(r'tR2, W)} 

+~ f dfia2h2(fiIRl-afi, W), d(R1) > 3a (5.4) 

The first integral on the rhs of this equation is again the contribution 
evaluated by Batchelor to be 1.55~bK (section 4). The remaining integrals 
represent modifications of the sedimentation velocity due to the container 
walls. Inspection of these terms suggests that they vanish when the distance 
between R1 and the container wall becomes large. That this is indeed so 
will be shown at greater length in Section 6. We note in passing that the 
second integral (fourth term) on the rhs of Eq. (5.4) is nothing but the wall 
correction to the one-particle mobility discussed already by Lorentz and 
Fax~n. (2) Sufficiently far from the walls Eq. (5.4) thus reduces to the form 
found in Eq. (4.6), 

6rrqaW(Rl) = - (1  - 6.55~b)K + g r / a  3 ,d V(R1) (5.5) 

The value of AV(R1), however, cannot be determined from symmetry 
arguments, as in Section 4, but must be calculated in a different way. 

In principle, one could evaluate the induced forces f0 and h2 occurring 
in Eq. (5.3) and then perform the integrations to find AV(R1). Here, 
however, we shall follow a different route. The main purpose of Eq. (5.3) 
was to establish a relation between the quantity AV(R1) and the 
conditionally convergent integrals involving D, and thus to derive the local 
equation (5.5) for w. 

In order to find a closed macroscopic description of sedimentation it is 
necessary to supplement Eq. (5.5) by a second, manifestly local equation 
for the mean volume flow V(r). This is easily achieved by averaging Eqs. 
(2.11) and (2.12), and yields, to linear order in ~b, 

~ / A V ( r ) - V P ' ( r ) -  3~b fa dR2F2(rIR 2, W) (5.6) 
4 rca3 (R2)>a 

V" V(r) = 0 (5.7) 

where P'(r) is the average of p'(r). Note that Eqs. (5.6) and (5.7) are valid 
for all points inside the container. On the container wall one has stick 
boundary conditions for V(r), which follow from the "microscopic" boun- 
dary conditions (2.8c) for v(r), 

V( r )=0  for r e W  (5.8) 
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It  remains to evaluate  the inhomogeneous  term on the rhs of Eq. (5.6) in 
terms of the byoyancy-cor ree ted  gravi ta t ional  force - K .  With  the decom- 
posi t ion (3.6) one has 

fa dR2 F d r l R 2 ,  W) 
(R2)  > a 

= f dfi a2f2(fi ] r - aft, W) 
Jd ( r - - a f i ) > a  

=-- fa(r_an)>adh 1 K+ fd(r a~)>a dfia2h2(fl]r-afi' W) (5.9) 

The first integral in the last m e m b e r  can easily be evaluated,  since the wall 
m a y  be considered to be flat on the length scale defined by the sphere 
radius a (see Fig. 1) 

dfi l K =  { K d(r,/2a f~ d(r)<~2a (5.10) 
fd(r-a~) > a for d(r) > a 

/ 
/ 

-< 
--.< 

\ 
\ 

\ 

/ \ 

X 
\ 

- ' d  - 

Fig. 1. The sector of integration in Eq. (5.10) is smaller than 4~z for d(r) < 2a. 
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The reader might wonder why we now insist upon discussing the force term 
in Eq. (5.8) near the wall, whereas the sedimentation velocity w was studied 
only in the case d(Rl)~>a. The reason is that Eq. (5.5) is an algebraic 
equation for w(r), while (5.6) and (5.7) are differential equations, the 
solution of which at a point R1 far from the wall will in general also 
depend on the value of the force term close to the wall. 

Evaluation of the second integral in the last member of Eq. (5.9) in 
terms of K is nontrivial. For  d(r) ~> a the part h2(r) of the induced force is 
of order laid(r)] 2 (Sec t ion6) .  As r approaches the wall, the integral 
becomes important. It can be evaluated by combining a multipole expan- 
sion of h 2 and a result due to Lorenrz, as was done in ref. 4. This requires 
extensive calculations, which we hope to present in a future publication. 
For  the time being, we use as a first approximation the monopole 
contribution (5.10) alone, which will lead to a volume flow V with 
qualitatively correct features. The differential equations (5.6) in that case 
reduces to 

3~b { ~ d ( r  ! ;  qAV(r)-VP'(r)=4--~a3 1-O(2a-d(r))2a 2a j K  (5.11) 

where O(x) denotes the Heaviside function of x. The constant force term 
on the rhs of (5.11) can be included in the pressure; defining 

P"(r)  -- P ' (r)  + ~3_~3 K . r  (5.12) 
# T z a  

one has 

-3~ 
q A V ( r )  - V P " ( r )  = ~ O ( 2 a  - d(r) )  - -  2a - d(r) K (5.13) 

2a 

We now study the solution of this differential equation for several container 
geometries. 

1. First we consider a suspension enclosed by two parallel plates at 
x = --b and x = b in a Cartesian coordinate system. The z axis is chosen in 
the direction of the component of K parallel to the plates. For symmetry 
reasons there can then be no dependence of the various fields on the y 
coordinates, and Vy must vanish. Since, moreover, in this case the con- 
tainer is not closed, we have to supplement the boundary condition (5.8) 
by a condition of no net flow through a cross section, 

fb Vzdx=O (5.14) 
b 
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As one may verify, the solution of Eq. (5.13) with the conditions (5.7), 
(5.8), and (5.14) is given by 

Here 

3 (1 3 9 la~(x~ 2 

for Ix[ <b-2a 

--~OVoz b -  1-2  + 
a -i 

for b-2a< Ixl < b  

V~=0 

P"=9 

(5.15a) 

(5.15b) 

+~_-L-~'_33(b Kx r/x O(l~l - b  + 2 a ) i l l -  b + 2a d~ (5.16) 
4~a Jo 2a 

v 0 = -6rcqaK (5.17) 

is the Stokes velocity of a sphere under the influence of an external force 
- - K .  

The velocity V= given by (5.15a) is sketched in Fig. 2. Note that there 
is a parabolic velocity profile inside the container, varying over distances of 
the order of b, the container dimension. The downward volume flow 
existing in the center of the container remains even in the limit b ~ oo. At 
x~b/x/3 the volume flow changes sign, and if one extrapolates the 
parabolic profile to Ixl = b, one finds an upward velocity 

( Vz)extrapolated = --3r Jr O(a/b) (5.18) 

In reality, the parabolic velocity profile ends at ]x[ =b-2a, and in the 
following narrow boundary layers the velocity decreases to zero, in 
agreement with the "microscopic" stick boundary condition. In the bulk, 
i.e., for ]xl < b - 2a, the Laplacian of the volume flow given by Eq. (5.15) is 
of order b -2, ,so that one recovers from Eq. (5.5) Batchelor's value for the 
relative sedimentation velocity in a macroscopic container far from the 
walls. 
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Fig. 2. The mean volume flow due to intrinsic convection between two parallel plates, as 
given in Eq. (5.15). The dashed line corresponds to b/a = 10, the solid line to b/a = 100. 

2. Let us now consider a suspension enclosed in a spherical container 
of radius b. We choose the origin of the coordinate system in its center. The 
solution of Eqs. (5.13), (5.7), and (5.8) for this geometry is given by 

[ 7 6 19~0.o . ~4a.+,2,48r. ~(a)~-~'2' 

~2~3+~)~ +Z~a)~-~) 
k xu/., 

( ,4 ,6 __fl~(:~2 (21 __f,2) ] 
+ 48fl3 t- 120fl------ ~ 4 8 ] \ a ]  

V ( r ) =  for b - 2 a < r < b  

9 [ ( ~ 4  6 
~o.  48~3+~+ ' ~htrT~2~-,~t 

76 ,~3 ~3 
-t- ( ' ~ f l  72fl3 18 + 1 -~ )  17 

for r < b -  2a  (5.19) 

with 

fl =- b/a,  7 - fl - 2 (5.20) 

822 53,1 2 [1 
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For large values of b/a the expression (5.19) reduces to 

V ( r )  = 

4'Vo" (1 - ~2) [ 
9 b - r + ~ ( b - r ) 2  3(~_~f_) 3 
2 a  \ a J  8 

for b - 2 a < r < b  (5.21) 

for r < b -  2a 

The bulk solution is similar, and the boundary layer solution identical to 
those found in the previous case. In the center of the container one finds a 
downward volume flow 

V(r = 0) = 3~bv0 + C(a/b) (5.22) 

in agreement with the result obtained by Beenakker and Mazur. (7) If one 
extrapolates the bulk velocity profile to the container wall, one gets 

Vextrapolated = -3~b(1 - ~ 2 ) .  u '~ (9(a/b) (5.23) 

in analogy to (5.18). Furthermore, the Laplacian of the volume flow is 
again of order b -z for r < b - 2 a ,  so that also in the case of a spherical 
container the relative sedimentation velocity has Batchelor's value. 

We note that the value 3~b on the rhs of Eqs. (5.22) and (5.23) is a con- 
sequence of the monopole approximation for the force profile in (5.6). It is 
to be expected that the influence which higher-order multipoles have on 
this coefficient is comparable to the influence which they have on the first 
virial coefficient of the sedimentation velocity as calculated by Batchelor, 
i.e., about 30 %. 

The convection phenomenon in homogeneous suspensions discussed 
above constitutes an effect of a different nature than the much larger 
(in magnitude) phenomenon of buoyancy-driven convection due to 
inhomogeneities in the particle density. It represents a shape-dependent 
effect (in contrast to the shape-independent relative sedimentation velocity) 
which ultimately is caused by the presence of walls. This effect was called 
essential convection by Beenakker and Mazur (7) and was later named more 
appropriately intrinsic convection by Nozi6res. (8) 

From the results obtained by explicit solution of Eq. (5.13) one may 
infer that, as far as the bulk solutions are concerned, the nonuniformity of 
the force profile in the narrow boundary layer may be neglected if one 
employs an effective boundary condition 

V(r )=  -3~b(1 - f i2 ) -v  o (re  W) (5.24) 

for the volume flow, where fi here denotes the normal on the wall. As a 
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boundary condition for arbitrary container geometry the relation (5.24) 
can also be derived by the following argument. The wall of a macroscopic 
container appears to be flat on the scale of the dimension a of the suspen- 
ded particles. The behavior of the volume flow close to a wall can therefore 
be found by solving Eq. (5.13) for a half-space geometry under the 
condition that this quantity remains finite far away from the wall. This also 
leads to the relation (5.24). 

Very recently Nozi6res proposed a macroscopic description of the 
hydrodynamic behavior of a suspension in terms of a set of two loca l  

coupled equations for the volume flow V(r) and the relative sedimentation 
velocity w(r). Nozi+res had in mind that the effect of the long-range nature 
of the hydrodynamic interaction on sedimentation would be taken care of 
through this coupling of w(r) and V(r). His equations, for homogeneous 
suspensions, read in our notation 

[pj .  + (~(p, - py)] g - VP = - t / A  V - e A w (5.25) 

(ps-- pf)g= 2w-- 7 zig (5.26) 

From Batchelor's result for the sedimentation coefficient (6) and Fax6n's 
theorem, ~2) Nozi6res concludes that 

9q 
)~ = ~ a  2 [1 + 6.55~b + (9(q~2)3 (5.27) 

3 
7 = ~  t /+ (9(~b) (5.28) 

He also shows that the following Onsager symmetry exists: 

= ~b7 (5.29) 

Since there is obviously no volume flow in the limit ~b ~ 0, it follows that 
AV(r) is at least of order ~b. Because the coefficient ~ is proportional to ~b, 
the term s a w  may be omitted from Eq. (5.25) to linear order in the volume 
fraction. To this order, our Eqs. (5.5) and (5.11) thus agree with those of 
Nozi6res. Our derivation of Eqs. (5.5) and (5.11) therefore provides a 
"microscopic" justification of the latter] In particular, (5.3) and the less 
general relation (4.5) express, so to say, in rigorous terms the fact that cer- 
tain long-range hydrodynamic interactions occurring in the sedimentation 
velocity may indeed be replaced by a local coupling to the volume flow, a 
fact which, as stated above, formed the basic idea that led Nozi6res to 
establish Eqs. (5.25) and (5.26). 

7 In an infinite system a justification of Nozi6res equations has been given very recently by 
Noetinger, (9~ to all orders in the volume fraction, within the framework of the connector 
formalism developed by Mazur  and van Saarloos. (1~ 
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Nozi6res supplements his equations by a phenomenological boundary 
condition 

V = -6~b(1/- fi2) �9 w (5.30) 

where fi again denotes the normal of the wall and "V and w are 
extrapolations of the smooth bulk profiles up to the wall." Nozi~res admits 
that his derivation of Eq. (5.30) is questionable, and can only surmise that 

is of order unity. The "microscopic" theory developed in this paper shows 
that his boundary condition has the correct form. As Nozi~res already 
stated, the value 3 for 6 found above (and to which he concludes by com- 
parison with the result of Beenakker and Mazur) can only be an 
approximation to lowest order. 

6. E S T I M A T E S  OF W A L L  CORRECTION T E R M S  

In this rather technical section it will be shown that the correction 
terms to Eq. (5.5), which are due to the presence of container walls, 
become negligible if one considers a position sufficiently far away from the 
walls. We shall not try to achieve mathematical rigor. Moreover, only the 
case of a spherical container of radius b will be treated; we comment on 
this restriction below. 

Let us start by deriving an operator expression for the induced forces, 
using the tensor/7. This tensor was introduced in Section 2 as fundamental 
solution of the stationary equation of motion 

2 

V. P'(r)= ~ Fi(r) (6.1) 
i=1 

[cf. Eqs. (2.11) and (2.16)] (for the dilute systems considered it suffices to 
treat the case that at most two spheres are present). From Eq. (6.1) one 
finds for the induced surface force density [cf. Eq. (2.9)], using the fact that 
P' vanishes inside the spheres, 

fl(fi)  = lira ft. P'(R1 + a'fi) (6.2) 
a' j ,a  

Combination of this result with formula (2.16) leads to the expression 

fi(fi) = lim fi" ~ dfi' aZ/7(a'fi - aft')- fl(fi') 
a ' , ~ a  d 

+ fi" dfi' a2/7(R1 + ah - R 2 - aft')" f2(fi') 

+ft" dll' b2F](R1 +afi-bfi')'fo(bfi') (6.3) 
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which can also be written in the short-hand operator notation 

fl = ~l l f l  + %2fa + %ofo (6.4) 

The definition of the integral operators ~0 becomes obvious on comparing 
Eqs. (6.3) and (6.4). When acting on a constant force density, the operator 
(gll can be further evaluated. Using integral relations for irreducible tensors 
(see, e.g., ref. 10), one may verify that 

f {-4~f.17(r)+(a2/r)D(r) for r>a (6.5) 
f-  / 7 ( r - a f t )  df i= 0 for r < a  

In the limit that r approaches a from above, one obtains from this formula 
[cf. (2.14)] 

lira f" ~/-/(r - aft) a 2 dfi = 1 (6.6) 
r,k a d 

so that 

~IIK=K (6.7) 

Using Eq. (6.7) together with the decomposition (3.6) of the induces forces 
on the spheres, one gets, with k--(1/4~a2)K, 

hi = ~ 1 h l  + ~12(-k  + h2) + %o fo (6.8) 

A corresponding expression exists of course for h2, 

h 2 = rg21 ( - k  + hi) + cg22h 2 + Cg2of o (6.9) 

In a way similar to the derivation of Eq. (6.4), one can find an analogous 
relation for the induced force fo on the container wall, 

fo = ~o1( - k  + hi) + % 2 ( - k  + h2) + %ofo (6.10) 

Here the operators (~oo and (do~ are defined by 

(%ofo)(bfi) = -limfi'fl7(b'fi-bfi')'fo(bfi')bZdfi ' (6.11) 
b ' T b  

(~olf~)(bfi) = -fi .flT(bfi-Rl-afi ').fl(fi ')a2dfi ' (6.12) 

In contrast to ~11, the operator ~oo maps a constant force density on zero 
[cf. Eq. (6.5)] 

%ok = 0  (6.13) 

Note further that (doo does not depend on the container radius b. 
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We now first consider the case that there is only one sphere in the 
container,  i.e., f;(fi) = f,(fi]R,,  W) (i = 1, 2). The  equations (6.8) and (6.10) 
then reduce to (i = 1, 2) 

- cg,0 f 0 + (1 - ~ , )h ,  = 0 (6.14) 

(1 - rgoo) f o - ego,h , = - ~ o i  k (6.15) 

In t roducing the abbreviations (i = 1, 2) 

- 1 - ~'i (6.16) 

@o- 1 -~oo (6.17) 

the solution of the system of equations (6.14), (6.15) reads (i = 1, 2) 

h i = - - ~ - l ( ~ , o ( ~ o - - ( ~ o i ~ - l ~ / o  ) l~o/k  (6.18) 

fo = - ( 3 0  - C.go,~ lc'~,-o)-i~o/k (6.19) 

Since ~,i k ---- k ( i :  1, 2) [-see Eq. (6.7)], it is clear that  ~ - 1  only exists on 
the subspace of the functions on the surface of the spheres which have no 
monopole  moment .  But this causes no difficulties in Eqs. (6.18) and (6.19), 
because the range of the opera tor  Cg,o on which @ 1 acts consists of 
functions with vanishing monopole  moment :  

j" dfi a2(~.o fo)(fi) 

= f df ia2f i  �9 f dfi' b2Fl(Ri+ afi-bfi ').fo(bfi '  ) 

= d f i ' b  2 d r - ~ r . H ( R , + r - b f i ' ) . f o ( b f i '  ) 
< a  

=fa 'b f (/=1,2) (6.2O) 
" r < a  

The expressions (6.18), (6.19) can now be used to estimate the magnitude 
of those wall correct ion terms on the rhs of Eq. (5.4) in which the induced 
force corresponds to the case that  there is only one sphere in the container. 
To  derive such estimates, we introduce a norm Ilfll of  a surface force 
density f by 

Nfill ~ I f  dfi If,(fi)12] 1/2 

71/2 
I l fo l l -  I f  dfi Ifo(bfi)i2J 

( i =  1, 2) (6.21) 

(6.22) 
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Making use of the familiar inequalities for norms, one finds 

[Ih/(Re, W)[L <~ 11~-1[I [l~.ol[ II(1 - ~olC~oi~-lc~i0)-lH (6.23) 

• I[~o111 I1%/11 [Ikll ( i=  1, 2) 

Iif0(Re, W)/I ~</1(1 --~0-1(~0i~--1(~9/0)--1H II~olll I1%11 Ilkll (6.24) 

In Appendix B we show that 

I1%/11 < const �9 

H%ll < const 

1 
(i = 1, 2) (6.25) 

b(b - R / -  a) 

1 
(i = 1, 2) (6.26) 

b - R e - a  

We note in passing that these upper bounds on the norms of the operators 
~o and %e become useless when sphere i touches the container wall, i.e., for 
R i+  a = b. Some estimations needed later, on the other hand, would be 
greatly faciliated if one knew that Cgeo and ego/ where always bounded. 
Fortunately, we may indeed suppose this in the present context for the 
following reason. It is quite clear that the divergence of the bounds-(6.25), 
(6.26) has nothing to do with the properties of the hydrodynamic inter- 
actions over large distances, which give rise to the question of shape 
dependence discussed in this paper, but rather stems from the singularity of 
the tensor /7(r) for r ~ 0 .  Without losing the essential'features of our 
system we may therefore assume that the statistical properties of the 
spheres are those of a gas of hard spheres of radius a + 6 ,  with some 
positive constant 6 very small compared to a, while the hydrodynamically 
relevant radius of the spheres remains equal to a. Such a system, for which 
the bounds (6.25), (6.26) are always finite, is not a worse model of a real 
suspension than the original one (i.e., that with 6 = 0). 

We furthermore assume that the operators ~ o  1 and ~ - 1  are bounded. 
We did not succeed in proving this property, although it is physically 
evident: After all, boundedness of, e.g., @01 only means that the magnitude 
of the force density induced on the container by an incoming pressure 
tensor field is at most of the order of magnitude of this incoming field. 

Using these assumptions, one finds from Eqs. (6.23) and (6.24) with 
the aid of (6.25) and (6.26) (for sutIiciently large b) the estimates ( i=  1, 2) 

1 
Hh/(Re, W)[I < const �9 (6.27) 

b(b - R e -  a) 

1 
IIf0(R/, W)ll < cons t -  (6.28) 

b(b - R i -  a) 
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From relation (6.28) one sees that the wall correction to the single-particle 
mobility, the second integral of the right member of Eq. (5.4), vanishes as 
lib if b tends to infinity, while Rib remains bounded by a given constant 
smaller than unity, 

f dfi b2A(R1 - bfi)- fo(bfi I R1, W) 

const <~b2b_---~fdfi Ifo(bfilR~, W)l 

const ( f  \1 /2 /~  ,,1/2 
~ < b 2 ~  dfi Ifo(bfiIR1, W)I 2) i j  dfi) 

~< b2 const lifo(R1, w)ll 

~< const (b - R1)(b - R1 - a) = (9 (6.29) 

Here use was made of the Schwarz inequality. 
The norm [[fill defined in Eq. (6.21) of course does not in general tell 

us anything about the absolute value of the function fi at a particular value 
of its argument. If the function is sufficiently smooth, however, the norm 
(6.12) provides a correct order-of-magnitude estimate of the maximum of 
Ifi(fi)[ with respect to ft. With this in mind one can convince oneself that 
the last two terms in Eq. (5.4) also vanish as lib if the container radius b 
tends to infinity while R1/b stays bounded by a constant smaller than unity. 
Indeed, the induced force hz(fi[R2, W) in these terms is a smooth function 
of fi and R2, since R2 is restricted to the neighborhood of R 1 and thus far 
away from the container wall which generates the force density 
h2(filR2, W). Furthermore, as b (and with it the distance between R1 and 
the container wall) grows, this force density can only become smoother 
still. 

In order to treat the remaining wall correction terms on the rhs of Eq. 
(5.4), it is necessary to solve the ful system of equations (6.8)-(6.10) with 
both particles present. For the estimation of these terms it turns out to be 
handy to insert in Eqs. (6.8)-(6.10) in front of h I and h 2 the projector 
given by 

(JC'f)(fi) --- f ( f i ) -  7 -1 1" dfi' f(fi') (6.30) 
c4/Z J 

which annihilates the monopole part of a force density f but leaves higher- 
order multipoles unchanged. The reason for inserting the projector W lies 
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in the fact that we can derive for the operator ~oi~f ~ ( i=  1, 2) the upper 
bound (cf. Appendix B) 

const 
[l%i~lI <b(b_Ri_a)2 ( i=  1, 2) (6.31) 

which is better than (6.25) for b - R i  ~> a. 
Introducing the abbreviations 

and 

(i, j = 1, 2) (6.32) 

- { i - 9 0 ' % ,  ~ i  9 - I ( % 0  + %2 w m  < % 0 )  

- ~ o- I (~02 ~ a 2  9 - 1((~20 -~- (0o21 ~ 9 i(~i0) } 1901 (6.33) 

one finds for 

6fo(R , , R 2, W) - fo(R1, R2, W) - fo(R1, W) - fo(R2, W) (6.34) 

from Eqs. (6.8)-(6.10) the formula 

6fo = - ~1-%1 ~(~1 - 1 )9-1%o + %1Ye~ 9-1~2w9 1%o 

+ ~eo2 w~9- ' (%0 + %, w 9  -~%o)] 

x ( 1 - 9 o 1 % 1 W ~  1%o)-19o1%1k 

- ~ [%2 ~.~(g2 - 1 )9  -1~20 + c~02 .Jf~2 9 --1(~21 ~ --l(bOlO 

x (1 -@omCg02~@-lcff20 ) l~@olCffo2k 

- f~%2Yfg29-'~2,(1 + Yf~- 'cg,2)k (6.35) 

We collect those terms on the rhs of this lengthy formula which are more 
easy to estimate in a function ~ defined by 

3fo = ~ -  9olCgo2~9-1~2o9o1%1 k -  ~ o 1 % 2 j f 9  1~21 k (6.36) 

Using (6.25), (6.26), and (6.31) as well as the relation (cf. Appendix B) 

const 
3" Ilcg1211 < (6._ ,) IR,-R=I (IR1-R21-2a) 
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one may verify that 

Ilvll <const-EI1%1~11 11%21l + II%1~lt 11%211 

+ 11%2~11 1141211 (%211 + 11%211)] (6.38) 

holds, and that, furthermore, 

fiR R2I > 2a + ,5 
R 2 < b  a - - 6  

dR2 11%211 < cons t ,  b (6.39) 

fR2<b_a_adR2 11%211 < c o n s t . b l o g ~  (6.40) 

1 
RI 112] >2a+6 dR2 11%2~11 11%211 (11%211 + 11%211)< c o n s t - ~  (6.41) 

R 2 < b  a - - 3  

Here it was once more assumed that b is sufficiently large and that the ratio 
R1/b is bounded by a constant smaller than unity. 

We are now in a position to treat the contribution to the wall correc- 
tions in Eq. (5.4) that contains V. Applying again Schwarz's inequality, one 
has 

f f dfi b2A(R, - bfi). ~(bfi) 
[RI--R21 > 2 a + 6  
R2 < b a c5 

~< const - Ilvll 
R 1 R21 > 2 a + 6  

R 2 < b - - a  6 

~< c~ "b - - - ~  b(b - R1)2 -t (b - R1)2 log ~ + ~  

(64 , 

The wall corrections containing 6fo-~r  require more careful study. 
Using only the function norm defined in Eqs. (6.21) and (6.22) and the 
estimates for the various operators with respect to this norm would not 
suffice to show that those terms also vanish as b ~ oo. Instead, we need to 
introduce a second function norm by 

Ilfolll = f Ifo(b~)l d~ (6.43) 
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because with respect to this norm we can give the estimate (cf. Appendix B) 

1 b 
[[~o2111 < const - 7--a--~ log -; ( R 2 < b - a - 6 )  (6.44) 

o 1 % o  

which is a factor (log b)/b better than (6.25) and (6.31) for R2"~b. 8 Using 
(6.44) together with (6.25) and (6.26), one finds for b sufficiently large and 
R1/b bounded by a constant < 1 

f f dfi b2A(R1 - b  fi)(~o~Cg02 Jt'~@-~cg20o@o~Cm k)(bfi) 
I R 1 -  R2I > 2 a + 6  
R 2 < b - - a  6 

b 2 
~<const ~ f R 2 < b  a a ,n logb �9 _ _ al% ~ f dfi l(9-1~20~olC~01k)(fi)l 

<~const . logbfR2<b_a_adR2-~-~2{fdf i[(~ 1(6'20 ~@0 1~01 k ) ( f i )  [ 2 } U2 

fO 5 a 6 const, log b dR2 82 E/~20ll [1%1 II 

~< const �9 log b dR2 R2 
1 1 

b -- R 2 -- a b(b - R1 - a) 

log b ~b - a-  a 1 
~< const,  b O0 dR2 b -  R 2 -  a 

= C[~ (log b)2] ~ 0  (b--, ~ )  (6.45) 

Finally, the wall correction containing the last term of the rhs of Eq. 
(6.36) can be estimated as follows: 

f R 2 < b _ a _ r 5  dRz f d f l b2A(R l -b f l ) (~o l c6~o2)~ - l~21k ) (b f l )  
I R l -  R2I > 2 a + 3  

b2fb 
H c6~02 H 1 11~2111 ~< const, b _---Z~ ~ al/3(b R1)2/3<R2 < b - a - 6  

b2 I " - -  dR211%2~[111%11[ + const b - R 1  R~-a21>2a+6 
b -- al/3(b -- RI) 2/3 > R2 

8 We carmot work exclusively with this L 1 norm since in other configurations and for different 
operators one obtains poorer estimates than with the norm introduced before. 
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const �9 log b ( 1 1 ~< 
Jb --al /3(b--Rl/}Z/3<.R2<b a 6 R2  ] R 1 - - R z ]  2 

+ const �9 fR2 < b -- a l /3 (b  -- R I )  2/3 

1 1 
d R 2  ( b _  R 2 )  2 IR1-R212 

~b-a-~ 1 R 2 1 + RI/R2 
~< const- log b Jb al/3(b R~)2/3 dR2 ~ ~ log 1 -- RI/R2 

+ const 1 f 1 
a2/3(b _ R1 )4/3 R1 - R2I < b + RI I R~ -- R2[ 2 

b R t + b  
~< const �9 log b log b - al/3(b -- R 1 )2/3 + const �9 (b - R 1 ) 4 / 3  

{log b'] 
=(9 \ b1/3 j ~ O  ( b ~ )  (6.46) 

Collecting the results (6.42), (6.45), and (6.46), we can write, for large 
values of b, 

fR1--R2I > 2 a - k 6  dR2 f d f ib2A(Rl-bf i ) '6 fo(bf i lRi  R2, W) 
R 2 < b - - a - - 6  

{log b'~ 
= (9 \-ffiTTj (6.47) 

This wall correction thus also bcomes small for large vessels. 
The only term on the rhs of Eq. (5.4) remaining to be studied is the 

one containing 

h2(R~, R2, W) - h2(R~, R2) - h2(R2, W) (6.48) 

Since the estimation of this term is lengthy but easier than that of the term 
containing 6 f0, we shall not give it explicitly here. One finds a better bound 
than that in (6.47). 

Note that in the above estimates R1 was allowed to grow propor- 
tionally to b as the latter increases. We have therefore shown that even if 
b -  R1 "~ b (though b -  R1 >> a), the wall corrections vanish for b--* ~ .  In 
this sense it was demonstrated that the validity of Eq. (5.5) is not restricted 
to positions near the center of the container if the latter is large enough. 

To conclude this section, we discuss the various assumptions that we 
had to make. 

The fact that we restricted ourselves to the case of spherical container 
does not appear to be an important limitation, since we did not make use 
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of the spherical symmetry. It  should not be an essential problem to extend 
our result to, e.g., the case of a general convex container, although the 
additional technical effort would probably be considerable. 

At one point we had to use the fact that the force density h2(fi1112, W) 
is a smooth function. The arguments used there are somewhat 
"handwaving," but they can undoubtedly be formalized if one considers it 
necessary. 

Finally, we had to assume that @o I and 9 -1 are bounded operators. 
We find this assumption physically very plausible; still, it would be nice if it 
someone could give a mathematical  proof. 

7. C O N C L U D I N G  R E M A R K S  

The theory proposed in this paper combines the simplicity of Nozi6res' 
phenomenological theory of the coupling between sedimentation and 
convection with the more fundamental character of the approach based on 
the treatment of many-body hydrodynamic interactions, which has been 
explored in Leiden during recent years. All the essential results of Nozi6res, 
who himself characterized his paper as "largely speculative," have been 
confirmed, at least to first order in the volume fraction and for 
homogeneous suspensions. 

The surprising phenomenon of intrinsic convection may therefore by 
now be considered well established from a theoretical point of view. The 
experimental situation is less clear. The only experimental reference we 
know of in which a possibly intrinsic convection flow was reported is a 
nearly 40-year-old paper by Kinosita. (n) More recent experiments conduc- 
ted by Buscall et  al., ~12~ on the other hand, seem to compare favorably with 
Noetinger's (9) calculation of the sedimentation velocity assuming zero  

v o l u m e  f l o w .  9 This does not, however, necessarily indicate the absence of 
intrinsic convection, because, in contrast to Kinosita, Buscall et  aL just 
measured the downward movement  of the meniscus separating the suspen- 
sion from the pure solvent. It will be only slightly distorted by intrinsic 
convection, which tends to lift the meniscus near the walls and to lower it 
in the center of the vessel, since the lateral inhomogeneity thus generated 
gives rise to an additional convective current leveling the meniscus again. 
We expect this additional convection to be negligible far away from the 

9 In a sharp corner of a vessel the effective boundary condition (5.30) would be incompatible 
with the incompressibility of the volume flow if it were to hold exactly at the wall. Misinter- 
preting the character of the effective boundary condition, Noetinger concluded that, for a 
parallelepipedic container the coefficient #, and consequently the intrinsic convection flow, 
should vanish. 
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meniscus, where the intrinsic convection should behave qualitatively as in 
the examples investigated in Section 5. We hope that experimentalists will 
feel challenged to provide the first unambiguous observation of intrinsic 
convection. 

On the theoretical side interesting problems remain, too. In the first 
place, we refer here to the need for a better calculation of the coefficient 
in the effective boundarycondition (5.28), which has up to now only be 
evaluated in monopole aproximation. Furthermore, it would be nice if one 
could improve on the rather coarse estimate of the wall correction terms 
given in Section 6. The physical expectation is that these terms are of order 
a/d(R1), which is much stronger than what we were able to show. 

A P P E N D I X  A 

We show in this Appendix that Batchelor's condition that the average 
of the deviatoric part d of the stress tensor is uniform implies that the 
Laplacian of the average volume flow vanishes. 

For the case of one sphere with center at R immersed in an infinite 
fluid, the tensor d(r) only depends on r - R  (for simplicity we take the 
sphere elastically isotropic). In the fluid part 

is d(r)=2~/ ~rrV(r]R) , Ir-RI >a (A.1) 

holds, with v(rlR) given by formula (4.7). In the solid part one has 

d(r) = d=(r - R), Ir - RJ < a (A.2) 

where d, depends on the elastic properties of the sphere but does not need 
to be specified here. 

The average of d then is, to first order in the volume fraction, given by 

N s 

{d(r))  = ~ {fr_R, >a dR 2q [~r  v(r ] R) ] 

= ~- {2r/f dR [~r v(r I R)I= + It,<, 

=2~/ 0 V(r + ~  ,<adr 'd( r ' )  

+Ir_nl<~ dR ds(r- R) t 

dr' d=(r')} 

(A.3) 

Here we used the fact that (~/Or)v(rlR) vanishes for I r - R l < a  [cf. 
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Eq. (4.7)]. F rom Batchelor 's condit ion that ( d ( r ) )  is uniform, one thus 
finds 

0 =7--"  ( d ( r ) )  = 2r /AV(r)  (A.4) 
o r  

A P P E N D I X  B 

In this Appendix we derive various bounds for operators  needed in 
Section 6. We start with the opera tor  ego1. For  an arbi t rary function f(fi) 
one finds, using Schwatz's inequality, 

](~oaf)(bfi)[ 2 

= f i . fH(bf i_Rl_af i , ) . f (n , )a2df i ,  2 

~< a 4 f df i '  fi" fT(bfi  - R 1 - a f t ' ) :  f ' ] (bf i  - R 1 - a l ' ) "  I] f Nil" I f ( f i " ) l  2 

1 
~ a 4 j  dfi i b f i _ R 1 - a f i ' ]  4 [Ifll 2 

4rca 4 
-- ( ibf i_R~12 a2)2 Ilfll 2 (B.1) 

For  ]1%1fl[ one obtains with the aid of this formula 

, olf,, =If 
~< 

< 

!/2 

dn [(~olf)(bf i ) [2J  

dfi ( i b f i _  R l12_  a2)Z Jlfjl 

4rca 2 
[-(b - R1) 2 - a 2 ] 1/2 [(b + R 1 ) 2  - -  a 2-] 1/2 ]lft[ 

47za 2 
Ilfll b(b-  R l - a )  

(B.2) 

which proves the relation (6.25) 
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For  Cgol~, a better bound  than (6.25) can be given in the case 
b -  R1 >> a. Since the integral of ~ ( f  over the surface of the unit sphere 
vanishes, one may write 

(ego1Jff)(b fi) 

= - f i -  f f7(fib - R 1 - aft ' )"  (;,vff)(fi,) 0 2 dfi' 

-f i  . f [a2H(fib- R1-af i ' ) -a217( f ib-  R1)] �9 (~,ut~f)(fi')dfi' (B.3) 

If b - R1 >> a, the elements of the tensor between square brackets in the last 
member  of Eq. (B.3) are of order  (a/Ib(fi-Rll) 3. Therefore  one has 

I I%a~f l l  ~< cons t -  dfi ibfi•kl[6 II~fl t  

a 3 
~<const (b+ R~)(b_R1) 2 [l~ftl, b-R~>>a (B.4) 

Since different multipoles are or thogonal  with respect to each other, [[Yffl4 
is smaller than or equal to [If][. The restriction b -  R1 >> a in relation (B.4)  
can be omit ted if one replaces the factor b -  R1 in the last member  of this 
expression by b - R l - a  [-cf. Eq . (B.2) ] .  Thus, the bound  (6.31) is 
obtained. 

The derivations of the bounds (6.26) for [IC~loJI and (6.37) for H~1211 
proceed analogously to the derivat ion of the relation (6.25) for H%lll: 

II~lofoll = dfi b2dfi'fi .Fl(Rl+afi-bfi ') ' fo(bfi ')] 2 

1 1/2 

4~b 
= [(b + RI + a)(b + R1 - a)(b - R1 + a)(b - RI - a) ]  1/2 Ilfoll 

1 
const. Ilfoll (g.5) 

b - a - R 1  

[[C6Vl2fH : L f d f i  f a2df i ' f i '17(R~+afi -R2-af i ' ) ' f ( f i ' )  211/2 
( f f  1 )~/2 ~<a 2 dfi dfi' [ R l _ R 2 + a f i _ a f i , i  4 [[fH 

47za 2 

- IR 1 - R21 ([R~ - R212 - 4a2) ~/2 IIfll 
1 

~< const - IIf H (B.6) 
I R , - R 2 [ ( I R 1 - R 2 I  - 2 a )  
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Finally, the bound (6.44) for cs with respect to the norm LI" I[1 defined 
in Eq. (6.43) can also be found in a straightforward manner: 

f ,  ( ,  

11%2f111 :jdfi Ja 2dfi,fi./7(bfi-R2-aft,).f(fi,) 
a 2 f r 

dfi dfi' If(fi')t J (Ibh-R21 - a )  2 J 

b + R 2 - a  1 - 2zta2 log 
R2b b - R 2 -  a b + R 2 -  a 

a 2 b 
< const R-~2b log 

1 ) ifflf, 
~-b-Rz-a 

ACKNOWLEDGMENT 

(B.7) 

One of us (U.G.) thanks the Stichting voor Fundamenteel Onderzoek 
der Materie for financial support. 

REFERENCES 

1. P. Mazur and W. van Saarloos, Physica 115A:21 (1982). 
2. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, Leiden, 

1973). 
3. J. M. Burgers, Proc. K. Ned. Akad. Wet. 44:1177 (1941). 
4. C. W. J. Beenakker and P. Mazur, Phys. Fluids 28:767 (1985). 
5, C. W. Pyun and M. Fixman, J. Chem. Phys. 41:937 (1964). 
6, G. K. Batchelor, J. Fluid Mech. 74:1 (1976). 
7, C. W. J. Beenakker and P. Mazur, Phys. Fluids 28:3203 (1985). 
8, P. Nozi6res, Physica 147A:219 (1987). 
9. B. Noetinger, Preprint, t~cole Normale Supfirieure de Physique et Chimie Industrielle. 

10. U. Geigenm/iller and P. Mazur, Physica 136A:316 (1986). 
11. K. Kinosita, J. Colloid Sci. 4:525 (1949). 
12. R. Buscall, J. W. Goodwin, R. H. Ottewill, and F. Tadros, J. Colloid Interface Sci. 85:78 

(1982). 

822/53/1-2-12 


